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Abstract. C60 molecules encapsulated in carbon nanotubes interact by van der Waals forces with the tube
walls. The nanotube field leads to orientational confinement of the C60 molecules which depends on the
nanotube radius. In small tubes with radius RT ≤ 7 Å a fivefold symmetry axis of the molecule coincides
with the tube axis, the center of mass of the molecule being located on the tube axis. The interaction
between C60 molecules encapsulated in the nanotube is then described by a O2-rotor model on a one-
dimensional (1-d) liquid chain with coupling between orientational and displacive degrees of freedom but
no long-range order. This coupling leads to a temperature-dependent chain contraction. The structure
factor of the 1-d liquid is derived. In tubes with larger radius the molecular centers of mass are displaced
off the tube axis. The distinction of two groups of peapods with on- and off-axis molecules suggests an
explanation of the apparent splitting of Ag modes of C60 in nanotubes measured by resonant Raman
scattering.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 61.48.+c
Fullerenes and fullerene-related materials – 81.05.Tp Fullerenes and related materials

1 Introduction

The discovery of carbon nanotubes (CNTs) by Iijima [1]
and the subsequent large-scale synthesis [2] of CNTs has
opened wide roads for the synthesis and fundamental stud-
ies of new materials and for the application of these mate-
rials in nanotechnology. For a review on CNTs, see refer-
ences [3,4]. By now it has become possible to grow novel
one-dimensional (1-d) crystalline structures of atoms and
molecules inside nanotubes (for a review, see Ref. [5]).
In particular the synthesis [6] of self-assembled chains
of C60 molecules inside single-walled carbon nanotubes
(SWCNT), the so-called peapods (C60)N@SWCNT, has
led to a unique class of nanoscopic hybrid materials with
unusual electronic [7] and structural properties. High-
resolution transmission electron microscopy observations
on sparsely filled CNT [8] demonstrate the motion of
molecules along the tube axis and imply that the inter-
action between C60 and the surrounding nanotube wall
is due to weak van der Waals forces and not to chemi-
cal bonds. At present it is possible to prepare fullerene
encapsulating tubules with high filling rate of C60 or
other fullerene molecules, thereby obtaining 1-d molecular
chains [9] inside the tube.

The controlled elaboration of 1-d atomic or molecu-
lar structures inside CNTs is of fundamental interest for
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the study of one-dimensional solids without long-range
order. Hitherto the best investigated 1-d chain struc-
tures are in fact subsystems of very anisotropic three-
dimensional (3-d) crystals. At sufficiently low tempera-
ture (T ) weak interactions between chains, mediated by
the surrounding crystal, lead to long-range order in the
subsystems. A prototype of a 1-d chain without long-
range order above a transition temperature Tc = 120 K
is the mercury chain salt Hg3−δAsF6, where chains of
Hg cations are intercalated into channels formed by the
3-d lattice of AsF−

6 [10,11]. Similary, in the 1-d conduc-
tor tetraphenyldithiapyranylidene iodide an organic ma-
trix separates parallel channels filled with I−3 anions [12].
Also here, below Tc = 180 K, a coupling between chains
induces a 3-d ordered state.

On the other hand we expect that peapods
(C60)N@SWCNT behave as truly 1-d molecular liquids
down to much lower temperature, possibly they are
the ideal 1-d structures without long-range order. Al-
though long-range order is absent, displacive (i.e. center-
of-mass displacements) and orientational (i.e. rotations of
the molecules) correlations between C60 molecules will
lead to 1-d crystal-like behavior. However the study of
(C60)N@SWCNT as a 1-d system is meaningful only for
CNTs with small tube radius RT ≤ 7 Å where the cen-
ters of mass of the molecules are located on the tube axis.
For tubes with a radius RT ≥ 7 Å total-energy electronic
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structure calculations show that the stable center-of-mass
position is removed away from the nanotube axis [13].
Similar conclusions are drawn from energy potential cal-
culations on spherical structureless molecules in perfect
structureless cylindrical nanotubes [14].

In the following we have formulated an analytical the-
ory which takes into account the confinement of the C60

molecules by the nanotube wall and the displacive and
orientational interactions between molecules.

The content of the paper is as follows. In the next
Section 2 we start from a model of van der Waals forces
between the C60 molecule and a structureless cylindri-
cal SWCNT. We describe the molecule by a rigid skele-
ton of interaction centers with icosahedral symmetry. We
construct the orientation-dependent energy potential ex-
perienced by a single C60 molecule encapsulated inside
a SWCNT. We draw Mercator maps of the potential
which show the variation with molecular orientation. The
preferential axial orientation of the C60 molecule and its
center-of-mass position depend on the radius of the nan-
otube. While we find 1-d crystal-like behavior in small
tubes, the 1-d character is lost in larger tubes. The the-
ory suggests an explanation for resonance Raman scat-
tering results [15,16] which show an apparent splitting of
Ag modes. In Section 3 we study the van der Waals in-
teractions between C60 molecules inside small nanotubes,
thereby taking into account the preferential fivefold ax-
ial orientations due to the nanotube field. The potential
energy of the interacting molecules is then obtained as a
two-dimensional (2-D) rotor model on a 1-d chain. Next
(Sect. 4) we study orientational and displacive correlations
of the non-rigid rotor model. The coupling of rotational
and translational degrees of freedom leads to a chain con-
traction. Short-range correlations are responsible for char-
acteristic peaks in the displacive structure factor, although
long-range order is absent. Conclusions are given in the
last Section 5.

2 Nanotube field on a C60 molecule

We will investigate the energy potential of a single C60

molecule inside a SWCNT due to the interaction of the
molecule with the tube wall. As a model of the tube we
take a structureless cylinder with radius RT and infinite
length. The tube wall is approximated by a smooth sur-
face density σ of carbon atoms, where we take the value
σ = 0.38 Å−2 as known from graphite. We justify the use
of such a model by the fact that the length of the nan-
otubes is several orders of magnitudes larger than their
diameter. Hence we neglect the caps at each end of the
tube. In addition the cylindrical portion of a SWCNT for-
mally consists of a single graphene sheet of sp2-bonded
carbon atoms, rolled to form the cylinder [17]. On the
other hand, the C60 molecule has a distinctive single and
double C–C bond structure. We then expect that the in-
teraction potential between the C60 molecule and the nan-
otube wall for a given nanotube radius is rather insensitive
on the discrete atomic structure of the cylindrical nan-

Fig. 1. A C60 molecule in standard orientation and in on-
axis center-of-mass position in a SWCNT, approximated as a
uniform cylinder. Shown is a projection onto the (X, Z) plane.
The molecular center of mass is in the coordinate system’s
origin. The cylinder is aligned along the Z axis.

otube wall. Detailed numerical calculations confirm this
conjecture [18].

We consider a tube-fixed Cartesian coordinate system
of axes (X,Y, Z) with origin O and such that the Z axis
coincides with the axis of the tube. We first study a C60

molecule with its center of mass in O, i.e. on the tube
axis (also called on-axis position). We recall that the C60

molecule, taken as a rigid body, has the shape of a trun-
cated icosahedron (point group symmetry Ih) consisting
of 12 pentagons and 20 hexagons [19]. The C–C bonds fus-
ing two hexagons or a hexagon and a pentagon are called
double bonds (db) and single bonds (sb) respectively. For
a review on properties of fullerenes and fullerene-related
compounds, see reference [17]. We consider a molecule-
fixed coordinate system of axes (x, y, z) centered in the
molecule such that these axes correspond to twofold axes
of the molecule. When the molecular system of axes is
in coincidence with the tube fixed axes (X,Y, Z), the
molecule is said to be in standard orientation (see Fig. 1).
The molecule is characterized by a rigid skeleton of inter-
action centers (ICs) [20,21] located at positions {�rΛi} on a
sphere with radius d = 3.55 Å, corresponding to the inner
radius of the C60 molecule. These centers, labeled by com-
posite indices Λi, are of three types i = 1, 2, 3: 60 atomic
ICs (i = 1), a set of 3 ICs on each of the 30 double bonds
(i = 2) and 60 single-bond (i = 3) ICs. The ICs on the
molecule interact with the tube wall C-density by van
der Waals potentials consisting of a repulsive Born–Mayer
part and an attractive London dispersion forces part. The
assumption of weak van der Waals forces is supported by
the observation of the mobility of the C60 molecule along
the tube axis in sparsely filled tubes [8]. Also total energy
electronic structure calculations show that the interaction
of the C60 molecule with the tube in the peapod is not
due to chemical bonds [22]. For a surface element dΣ(�ρ)
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Table 1. Potential constants C1, C2 and B, used for modelling C60 – SWCNT and C60 – C60 interactions, taken from
reference [23] except for the value of B11 which has been reduced by a factor 0.71. The indices i and i′ = 1, 2, 3 stand for atomic,
double bond and single bond ICs, respectively.

ii′ 11 22 33 12 13 23

Cii′
1 3.24 × 107 K 1.08 × 106 K 5.92 × 106 K 2.11 × 106 K 6.33 × 106 K 0

Cii′
2 3.6 Å−1 3.2 Å−1 3.6 Å−1 3.4 Å−1 3.6 Å−1 0

Bii′ 4.58 × 105 K Å6 0 0 0 0 0

around a point �ρ with cylindrical coordinates (ρ, Φ, Z) on
the tube and a center at �rΛi on the molecule one has the
potential

ui (|�ρ− �rΛi |) dΣ = σ
{
Ci1

1 exp
[−Ci1

2 |�ρ− �rΛi |
]

−Bi1/ |�ρ− �rΛi |6
}
dΣ, (2.1a)

where

dΣ = ρδ(ρ−RT)dρdZdΦ. (2.1b)

Here Ci1
1 , Ci1

2 and Bi1 are potential parameters that refer
to the interaction of a center of type i with a C-atom (i′ =
1); we use the potential parameters quoted in Table 1,
here and in the following energies are measured in units
K (Kelvin).

The positions �rΛi are measured in the tube-fixed
frame and depend on the orientation of the molecule.
We start from the molecule in standard orientation. In
terms of tube-fixed spherical coordinates we write �rΛi =
(d, θΛi , φΛi). The total interaction potential between the
nanotube and the molecule is called nanotube field poten-
tial (subscript NF). With the molecule in standard orien-
tation it reads

VNF(RT) = σRT

3∑
i=1

∑
Λi

∫ 2π

0

dΦ

∫ +∞

−∞
dZui (|�ρ− �rΛi |) .

(2.2)

Cylindrical symmetry (D∞h) implies that this interaction
does not depend on the azimuthal angles {φΛi}. It is there-
fore sufficient to take φΛi = 0, and to consider

|�ρ− �rΛi | =
[
(d sin θΛi −RT cosΦ)2 + (RT sinΦ)2

+ (d cos θΛi − Z)2
] 1

2
. (2.3)

We rewrite VNF(RT), as

VNF(RT) =
3∑

i=1

∑
Λi

vi(RT, θΛi) (2.4a)

where

vi(RT, θΛi) = σRT

∫ 2π

0

dΦ

∫ +∞

−∞
dZui (|�ρ− �rΛi |) .

(2.4b)

Notice that the integrand depends on θΛi and RT. Expan-
sion in terms of spherical harmonics yields

VNF(RT) =
3∑

i=1

∑
Λi

∞∑
l=0

l even

vi
l (RT)Y 0

l (θΛi) (2.5)

where

vi
l (RT) = 2π

∫ π

0

Y 0
l (θ)vi(RT, θ) sin θdθ. (2.6)

Rotating the molecule over Euler angles α, β, γ away from
its standard orientation we use the transformation law

R(α, β, γ)Y m
l (θ, φ) =

l∑
n=−l

Dl
n,m(α, β, γ)Y n

l (θ, φ). (2.7)

Here R(α, β, γ) is the rotation operator and Dl
n,m(α, β, γ)

are the Wigner matrices. We adopt the notations and defi-
nitions of reference [24]. In the present case, the cylindrical
symmetry implies m = 0 and hence the Wigner functions
Dl

n,0 do not depend on the angle α. The nanotube field
potential then becomes

VNF(RT;β, γ) =
3∑

i=1

∑
Λi

∞∑
l=0

leven

l∑
n=−l

vi
l (RT)Dl

n,0(β, γ)Y
n
l (θΛi , φΛi ). (2.8)

So far we have exploited the cylinder symmetry, i.e. the
site symmetry. The molecular symmetry (Ih) is accounted
for by the distribution of interaction centers. We define
structure coefficients of the molecule by [21]

ci n
l =

∑
Λi

Y n
l (θΛi , φΛi ). (2.9)

It is useful to introduce molecular shape factors

gi
l =

√√√√
l∑

n=−l

(
ci n
l

)2
, (2.10a)

and normalization coefficients

αi n
l =

ci n
l

gi
l

. (2.10b)
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Icosahedral symmetry of the molecule implies that ci n
l is

different from zero for n even and l = 0, 6, 10, 12,... In
addition

∣∣αi n
l

∣∣ does not depend on i, i.e. on the type of
the interaction center. One has

αi n
l = εi

lα
a n
l , (2.10c)

where αa n
l refer to atomic centers and εi

l = ±1, see refer-
ence [21]. Defining

g̃i
l = εi

lg
i
l , (2.11)

we rewrite the nanotube field potential as

VNF(RT;β, γ) =
∑

l=0,6,10,...

vi
l(RT)g̃i

lUl(β, γ), (2.12)

where

Ul(β, γ) ≡ Ua
l (β, γ) =

l∑
n=−l

αa n
l Dl

n,0(β, γ) (2.13)

are molecular and cylinder symmetry adapted rotator
functions. Rotator functions, originally introduced by
James and Keenan [25] are the appropriate variables for
the description of orientational-dependent properties of
molecules in crystals [26,27]. They incorporate the sym-
metry of the molecule and the symmetry of the crystal site
point group. In the present case the crystal site symmetry
is replaced by the D∞h symmetry of the nanotube.

For a given set of interaction potential parameters, we
have plotted the potential VNF(RT;β, γ) for different tube
radii in form of Mercator [28] maps as a function of the
angles 0 ≤ β ≤ π and 0 ≤ γ ≤ 2π. Figures 2a and c
refer to RT = 6.5 Å and RT = 8.5 Å. In Figure 2a
twelve equivalent minima of the potential — which de-
termine the most probable orientations of the molecule
— are found. The values (β ≈ 58◦, γ = 0) correspond to
the situation where the molecule has been rotated coun-
terclockwise around the Y axis, away from the standard
orientation by an angle β = arccos 2/(10 + 2

√
5)

1
2 . Then,

the nanotube’s long axis intersects the centers of two op-
posing pentagons (a fivefold axis of the molecule coincides
with the tube axis). The minima correspond to the twelve
pentagons on the C60 molecule. The twenty maxima ap-
pearing in Figure 2a correspond to the energetically un-
favorable orientation when the tube axis intersects two
opposing hexagon faces (a threefold axis of C60 coincides
with the tube axis). On the other hand, comparing Fig-
ure 2c with Figure 2a, we find that for RT = 8.5 Å, the
positions of potential maxima and minima are reversed.
Potential minima now correspond to orientations of the
molecule where a threefold axis of the molecule coincides
with the tube axis. The distinction of two preferred orien-
tations as a function of the tube radius reflects the com-
petition between the short-range repulsive and the long-
range attractive parts of the van der Waals interactions.
Considering the smaller nanotube with RT = 6.5 Å but
neglecting the repulsive interactions, we obtain a Merca-
tor map similar to Figure 2c. For RT = 7.5 Å we find an

Fig. 2. Mercator maps of the nanotube field potential
VNF(RT; β, γ), units K: (a) RT = 6.5 Å, (b) RT = 7.5 Å and
(c) RT = 8.5 Å. Center of mass of the C60 molecule in on-axis
position. The lowest occurring value has been subtracted to
make the minimal potential energies lie at zero.

intermediate case shown in Figure 2b; the competition be-
tween repulsive and attractive forces leads to a molecular
orientation where a twofold axis of the molecule is parallel
to the tube axis. This orientation favors polymerization of
C60 molecules [29]. We recall that polymerization always
occurs in potassium-doped peapods [30].
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Fig. 3. Variation of the nanotube field potential VNF(RT, ∆)
for three different tube radii: RT = 6.86 Å (solid line), RT =
7.55 Å (dashed line) and RT = 8.24 Å (dotted line), corre-
sponding to (10, 10), (11, 11) and (12, 12) tubes, respectively.

However more important than the change of molecu-
lar orientation is the fact that with increasing nanotube
radius RT, the nanotube axis is no longer a locus of stabil-
ity for the center of mass of the molecule. In Figure 3 we
have plotted the nanotube field potential VNF(RT, ∆) of
the C60 molecule with a fivefold axis parallel to the tube
axis as a function of the distance∆ of the center of mass of
the molecule from the tube axis. For RT = 7.55 Å, which
corresponds to the radius of an (11, 11) armchair tube [17],
the potential difference between the maximum on axis and
the minimum off axis at ∆m = 1.1 Å is 5 × 103 K and
an order of magnitude larger than any effect of molecu-
lar orientation. The displacement of the molecular center-
of-mass position away from the nanotube axis for larger
tubes reflects the increasing importance of the attractive
parts of the van der Waals potential at the expense of
the repulsive parts. For C60@(12, 12) with RT = 8.24 Å
we obtain ∆m = 1.8 Å, comparable to 1.6 Å from total-
energy electronic structure calculations [13]. Our results
of Figure 3 are in qualitative agreement with potential
energy calculations where a homogeneous distribution of
C atoms on both the nanotube and the C60 molecule was
assumed [14]. The large energy differences (order eV) be-
tween minima of VNF(RT, ∆m) for RT ≤ 7 Å, ∆m = 0 and
RT ≥ 7 Å, ∆m �= 0 respectively, suggests a classification
of C60@SWCNT peapods into two groups depending on
the tube radius: small nanotubes with molecular center-
of-mass positions on-axis and large tubes with off-axis po-
sitions.

Resonance Raman scattering [15] measurements on
single-walled carbon nanotubes filled with C60 molecules
exhibit an unexpected splitting of the totally symmetric
modes of the C60 molecule. In particular, the pentago-
nal pinch mode Ag(2) “splits” into a doublet Ag(2)′ and
Ag(2)′′ below room temperature. This mode, located at
1469 cm−1 in pristine C60, can be used as a probe for
structural and electronic properties. We attribute the ob-
served splitting of the Ag modes of the C60 molecule to
two distinct symmetry breakings of the molecule resulting
from the on- and off-axis center-of-mass position for small

and large nanotubes, respectively. Experiments are car-
ried out on C60@SWCNT with a dispersion of tube radii.
This resolves the paradox that there should be no split-
ting for the non-degenerate Ag modes. The present expla-
nation is corroborated by the experimental fact [15] that
thinner tubes tend to yield stronger Ag(2)′′ components.
From Figure 3 we see that the nanotube field potential is
larger in absolute value for the smaller than for the larger
peapods at their respective molecular center-of-mass po-
sitions ∆m.

In line with the present interpretation of the
Ag(2) mode “splitting” of C60 are conclusions drawn
from Raman spectroelectrochemistry experiments [16] on
(C60)N@SWCNT peapods. The intensity of the mode at
1465 cm−1 is considerably increased by anodic doping,
in addition there is a satellite line at 1474 cm−1. It is
suggested [16] that the satellite line might correspond to
peapods of different structure.

Our treatment of the attractive van der Waals forces
is based on a summation over attractive pair potentials
between interaction centers at �rΛi on the molecule and a
surface density σ at �ρ on the nanotube. Assuming London
dispersion forces the pair potentials vary with distance
as |�ρ − �rΛi |−6. By integrating over the nanotube surface,
the latter is treated as a macroscopic body. Since the pair
potentials are of long range, the result of summation (in-
tegration) is not additive but depends on the shape of
the macroscopic body. This well-known phenomenon [31]
leads to a characteristic inverse power law decrease of the
total potential as a function of distance. For instance the
attractive interaction energy potential of a neutral atom
with a planar dielectric wall at distance L varies as L−4.

Since the nanotube wall has a curvature, we will in-
vestigate the inverse power law decrease of the nanotube
field with the tube radius RT while keeping the molecule
with its center of mass on the tube axis (∆ = 0). We
are interested in large values of RT, say >20 Å, hence
the repulsive Born–Mayer part of the pair potential ui in
equation (2.1a) will become exponentially small, and any
relevant contribution to the nanotube field will be due to
the attractive part of ui. To eliminate the dependence of
the nanotube field on the orientation of the C60 molecule,
one should calculate the average crystal field experienced
by a C60 molecule in a nanotube with radius RT,

〈
VNF(RT)

〉
=

1
2π2

∫ π

0

dβ

∫ 2π

0

dγVNF(β, γ;RT). (2.14)

However, for large RT, any particular crystal field value
VNF(β, γ;RT) is representative since the variation of VNF

with (β, γ) decreases rapidly with increasing tube radius
RT, a trend already observed in Figures 2a–c where the
radius is increased from 6.5 Å to 8.5 Å. We have therefore
chosen to consider the dependence of VNF(β, γ;RT) on RT

at (β, γ) = (0, 0).
Figure 4 shows the calculated VNF(0, 0;RT) ≡

VNF(RT) values for RT ranging from 6 Å till 105 Å with
an incremental step of 1 Å. At 7 Å, we observe a mini-
mum; the values at higher RT can be used to determine
the long-distance attraction law. We have fitted the data
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Fig. 4. Calculated values VNF(β = 0, γ = 0; RT) for 20 Å≤
RT ≤ 105 Å (dots) and the fitting curve −c4/R4

T with c4 =
8.376 × 107 KÅ4 (solid line). The Inset shows the VNF(β =
0, γ = 0; RT) values for 6 Å≤ RT ≤ 20 Å.

(
RT, VNF(RT)

)
for RT ≥ 20 Å to attraction laws of the

type

VNF(RT) = − cl

Rl
T

, (2.15)

with l = 3, 4, 5, 6. From the values of the R2 goodness-of-
fit statistic we conclude that l = 4 fits the data best.

3 Intermolecular potentials

Taking advantage of the orientational confinement of the
molecules by the encapsulating nanotube, we formulate a
1-d theoretical model of (C60)N@SWCNT: beside corre-
lations between center-of-mass positions of the molecules,
also orientational correlations have to be taken into ac-
count. We will show that at low T , the orientational inter-
action potential V RR of an individual chain of molecules
inside a nanotube corresponds to a O2-symmetry classical
rotor model [32] on a linear chain.

Given the results of the last section, we restrict our-
selves to small tubes (RT ≤ 7 Å) where molecular rota-
tions take place about a fivefold axis which coincides with
the Z axis of the nanotube. The corresponding initial axial
orientation is shown in Figure 5. Since the nanotube field
potential equation (2.12) does not depend on the Euler
angle α, an isolated C60 molecule can rotate about the
Z axis without potential energy change. Following experi-
mental evidence [9], we will study a linear chain of N C60

molecules. The molecules are labeled by an index n ∈ Z,
their center-of-mass positions {ζ(n)} are located on the
Z axis of the tube. To every C60 molecule we assign a ro-
tation angle ψ(n) measuring the rotation about the Z axis
away from the initial orientation. We again consider a C60

molecule as a cluster of interaction centers; the interaction

Fig. 5. (a) Projection of a C60 molecule, rotated about the Y
axis over β ≈ 58◦, onto the (X, Y ) plane. Note the staggered
configuration of the “front” and “back” pentagons, marked
bold, and the Z axis being a five-fold symmetry axis. (b) Pro-
jection onto the (Y, Z) plane.

energy of two neighboring molecules then reads

V (2)(n, n+ 1) =∑
i

∑
i′

∑
Λi

∑
Λ′

i′

U ii′(|�rΛi(n) − �rΛ′
i′
(n+ 1)|), (3.1)

with the van der Waals pair interaction potential between
centers given by

U ii′ (r) = Cii′
1 e−Cii′

2 r − Bii′

r6
. (3.2)

Here again the potential parameters of Table 1 have been
used. The interaction potential equation (3.1) of two con-
fined nearest-neighbor molecules taken as rigid bodies de-
pends on the mutual orientations and on the distance be-
tween their centers of mass:

V (2) (ζ(n), ζ(n− 1);ψ(n), ψ(n− 1)) ≡
V (2) (ζ(n) − ζ(n− 1);ψ(n) − ψ(n− 1)) . (3.3)
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The total interaction potential of N molecules inside the
nanotube reads

V =
N∑

n=2

V (2) (ζ(n) − ζ(n− 1);ψ(n) − ψ(n− 1)) . (3.4)

Since N is large we will neglect boundary effects.
We first study the rotational interaction of a rigid

chain, where all distances {ζ(n) − ζ(n− 1)} are replaced
by an average separation a. We write

V (2) (a;ψ(n) − ψ(n− 1)) ≡ V (2) (ψ(n) − ψ(n− 1)) .
(3.5)

Taking into account the fivefold rotation symmetry we
expand into a Fourier series:

V (2) (ψ(n) − ψ(n− 1)) =
∞∑
l=0

Al cos (l [ψ(n) − ψ(n− 1)]) ,

(3.6a)

where

Al = Nl

∫ 2π

0

dψ cos(lψ)V (2)(ψ), (3.6b)

with N0 = (2π)−1 and Nl �=0 = π. No sine-term ocurs in
the expansion (3.6a) since V (2)(ψ) = V (2)(−ψ). Fivefold
symmetry implies that the values of l are restricted to
l = 0, 5, 10, . . .. Omitting the constant A0 term in equa-
tion (3.6a) and retaining the lowest-order contributionA5,
we obtain

V (2) (ψ(n) − ψ(n+ 1)) = J cos (5 [ψ(n) − ψ(n− 1)])
(3.7)

where J stands for A5. Introducing two-dimensional (2-D)
vectors

�S(n) =
(

cos (5ψ(n))
sin (5ψ(n))

)
(3.8)

as orientational order parameters, we obtain the total ro-
tational interaction contribution V RR from equation (3.4)
in the form

V RR =
N∑

n=2

J �S(n) · �S(n− 1). (3.9)

This expression corresponds to the “Hamiltonian” of a ro-
tor model withO2 symmetry [32] on a 1-d lattice. With the
potential constants of Table 1 we obtain J = −19 K < 0.
If the two neighboring molecules n and n−1 have the same
orientation, i.e. ψ(n) = ψ(n−1), then �S(n) · �S(n−1) = 1,
their interaction energy has the minimum value −|J |. Re-
calling that the C60 molecule has a center of inversion sym-
metry (see Fig. 5), we realize that a same axial orientation
of two neighboring molecules corresponds to the situation
where their two nearest-neighbor pentagonal faces are in

staggered configuration, such that the intermolecular re-
pulsion is minimized.

We now will include the actual center-of-mass dis-
tances ζ(n) − ζ(n − 1) and study the coupling of orien-
tational and translational degrees of freedom. Although
there is no long-range translational order in the 1-d chain,
we may assume that due to short-range correlations the
deviations of ζ(n) − ζ(n− 1) from the average distance a
are small and consider

ξ(n) = ζ(n) − ζ(n− 1) − a (3.10)

as expansion parameter. Up to second order in ξ(n) we
obtain from the right-hand-side (r.h.s.) term of equa-
tion (3.4):

V (2) (ζ(n) − ζ(n− 1);ψ(n) − ψ(n− 1)) =

V (2) (ψ(n) − ψ(n− 1)) + V (2)′ (ψ(n) − ψ(n− 1)) ξ(n)

+
1
2
V (2)′′ (ψ(n) − ψ(n− 1)) ξ(n)2 + . . . (3.11)

Here the first term on the r.h.s. is the rigid-lattice
term equation (3.5) while V (2)′ and V (2)′′ stand for
the first and second derivatives of V (2) with respect to
[ζ(n) − ζ(n− 1)], then taken at ζ(n) − ζ(n − 1) = a.
These coefficients still depend on the axial molecular ori-
entation. The expansion in terms of angular coordinates
for the rigid lattice term has already been given in equa-
tions (3.6a)–(3.9). In addition we now have

V (2)′ (ψ(n) − ψ(n− 1)) =

A′
0 +A′

5 cos (5 [ψ(n) − ψ(n− 1)]) + . . . (3.12)

and

V (2)′′ (ψ(n) − ψ(n− 1)) = A′′
0 + . . . (3.13)

where

A′
0 =

1
2π

∫ 2π

0

dψ
∂V (2) (ζ(n) − ζ(n− 1);ψ)

∂ζ(n)

∣∣∣∣
ξ(n)=0

,

(3.14a)

A′
l =

1
π

∫ 2π

0

dψ cos(lψ)
∂V (2) (ζ(n)−ζ(n− 1);ψ)

∂ζ(n)

∣∣∣∣
ξ(n)=0

,

(3.14b)

A′′
0 =

1
2π

∫ 2π

0

dψ
∂2V (2) (ζ(n) − ζ(n− 1);ψ)

∂ζ(n)2

∣∣∣∣
ξ(n)=0

.

(3.14c)

The equilibrium lattice constant a is determined by the
condition

A′
0(a) = 0. (3.15)

The calculated value a = 10.211 Å is close to the experi-
mental result a ∼ 10 Å [33]. Restricting ourselves to l = 0
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and l = 5 angular terms, we obtain for the translation-
and rotation-dependent potential V , equation (3.4):

V = (N − 1)A0 + V RR + V TT + V RRT. (3.16)

Here the translation-translation (TT) contribution reads

V TT =
f

2

N∑
n=2

ξ(n)2, (3.17)

where f = A′′
0 is the lattice “spring constant”. The last

term V RRT in equation (3.16) accounts for the coupling
between translational and rotational degrees of freedom of
neighboring C60 molecules in the nanotube and reads

V RRT = λ

N∑
n=2

�S(n) · �S(n− 1)ξ(n). (3.18)

Here the coupling constant λ = A′
5 is obtained from

equation (3.14b). Numerical values, resulting from the
intermolecular van der Waals potential (3.1), are f =
18255 K Å−2 and λ = 79 K Å−1. In C60 fullerite the inter-
action V RRT drives [34] the contraction of the crystal lat-
tice [35,36] at the first-order phase transition from the ori-
entationally disordered cubic phase Fm3m to the ordered
cubic pahse Pa3. The interaction V RRT is reminiscent of
the spin-lattice interaction in compressible magnets [37]
where it leads to phenomena known as magneto-thermo-
mechanics. In the next section we will show that the inter-
action V RRT leads to a decrease of the average molecular
nearest-neighbor distance a with decreasing temperature.

In deriving the orientation-dependent contributions
to V , we have taken into account the interaction of the
molecule with the nanotube by restricting the orienta-
tional degrees of freedom of the molecule to rotations
about a fivefold molecular axis which coincides with the
tube axis. Once this condition, required for nanotubes
with small radii (RT ≤ 7 Å), has been imposed, there is
no restriction on the molecular rotation angle ψ. This fact
is a consequence of our model of a structureless nanotube.
On the other hand the question arises whether the situ-
ations of nanotubes with armchair (ν, ν) or zig-zag (ν, 0)
structure is markedly different if the symmetry of the nan-
otube is compatible with the symmetry of the fivefold ro-
tation axis of the molecule. Here and in the following we
use the notation (ν, µ) where the integers ν and µ are the
indices [38,39] which characterize the structure of the nan-
otube. In case of armchair or zig-zag nanotubes, a “crystal
field” potential of the form

V R
ν =

∑
n

Aν cos
(
νψ(n)

)
, (3.19)

has to be added to the total potential V . Here ν = 5p,
where p is a nonzero integer. The amplitude Aν is a
Fourier expansion coefficient of the interaction potential
of the molecule with the armchair or zig-zag nanotube
wall. The case p = 1 corresponds to a coupling of the
nanotube wall to the orientational order parameter com-
ponent cos

(
5ψ(n)

)
. However, the radius of the (5, 5) nan-

otube with value RT = 3.43 Å is too small to allow the

encapsulation of a C60 molecule with effective outer ra-
dius ≈5 Å; the same remark applies to the (5, 0) nanotube
of even smaller radius. More realistic for C60 peapods [33]
is the case p = 2, referring to the nanotube (10, 10) with
RT = 6.86 Å. However the corresponding nanotube field
which is proportional to cos(10ψ) does not induce any
long-range orientational order since the thermal expecta-
tion values

〈
cos(5ψ)

〉
and

〈
sin(5ψ)

〉
vanish. The same re-

sult holds for armchair and zig-zag nanotubes with higher
indices ν.

The present considerations on 1-d aspects of
C60 peapods are meaningful for nanotubes with RT ≤ 7 Å.
For tubes with larger radii, zig-zag and helical chain struc-
tures of C60 molecules become possible [40,41].

4 Orientational and translational correlations

Although a 1-d model described by the interaction po-
tential (3.16) does not lead to perfect long-range order
at finite temperature T we obtain orientational correla-
tions which can interfere with the translational modes. In
the following we will calculate correlation functions within
classical physics. Due to the large mass and moment of in-
ertia of the C60 molecule such an approach is well justified
even for T as low as 0.01 K. Nearest-neighbor orientational
order parameter correlations, given by the thermal aver-
ages

Γ (1) = 〈�S(n) · �S(n− 1)〉 = 〈cos (5 [ψ(n) − ψ(n− 1])〉,
(4.1)

can be evaluated analytically as follows. We define φ(n) =
5 [ψ(n) − ψ(n− 1)], and rewrite the rotational interaction
on a rigid lattice as

V RR =
N∑

n=2

J cosφ(n). (4.2)

We then calculate

Γ (1) =

N∏
n=2

∫ 2π

0

dφ(n) cosφ(n)e−V RR({φ})/T

N∏
n=2

∫ 2π

0

dφ(n)e−V RR({φ})/T

(4.3)

with the result

Γ (1) =
I1

(
|J|
T

)

I0

(
|J|
T

) (4.4)

which is known from the 2-D rotor model [42]. Here we
use units kB = 1, i.e. all energies are measured in units
K. The functions I1 and I0 are modified Bessel functions.
This expression approaches the value 0 in the high-T limit
and 1 in the low-T limit. The total energy decrease due to
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nearest-neighbor orientational correlations of the chain of
N molecules is given by

〈V RR〉 = −(N − 1)|J |Γ (1). (4.5)

We next turn to translational correlations. A harmonic
interaction potential V TT similar to equation (3.17) has
been introduced previously [11] for an individual chain
of Hg ions in Hg3−δAsF6. The mean-square deviation
σ2 in the relative center-of-mass positions of neighboring
molecules is obtained from

〈ξ2(n)〉 =

∫ +∞

−∞
dξ(2) . . .

∫ +∞

−∞
dξ(N)ξ2(n)e−V TT/T

∫ +∞

−∞
dξ(2) . . .

∫ +∞

−∞
dξ(N)e−V TT/T

(4.6)

with the result

σ2 ≡ 〈[ζ(n) − ζ(n− 1) − a]2〉 =
T

f
. (4.7)

While the harmonic potential V TT does not affect the
average distance between nearest-neighbor molecules, i.e.
〈ζ(n) − ζ(n − 1)〉 − a = 0, the coupling V RRT between
rotational and translational degrees of freedom leads to
a decrease of the average distance. In absence of long-
range orientational order at finite temperature, we average
V RRT over the orientational degrees of freedom, thereby
taking into account short-range correlations:

V RRT({ξ(n)}) = λΓ (1)
N∑

n=2

ξ(n). (4.8)

Here the factor λΓ (1) ≡ K can be considered as an inter-
nal force coupling to the relative center-of-mass displace-
ments. Taking into account V RRT given by equation (4.8)
and V TT defined by equation (3.17), we calculate the
translational part of the partition function:

Z =
1

aN−1

×
∫ +∞

−∞
dξ(2) . . .

∫ +∞

−∞
dξ(N)ξ2(n)e

−f
2T

∑
n ξ(n)2−K

T

∑
n ξ(n)

=
(

2πT
a2f

)N−1
2

e
(N−1)K2

2fT . (4.9)

The free energy is given by

F = −T lnZ = C − (N − 1)
K2

2f
, (4.10)

with C = −(N − 1)T
2 ln 2πT

a2f . Taking the derivative of
F with respect to the internal force K we obtain the
average center-of-mass distance between nearest-neighbor
molecules

〈ζ(n) − ζ(n− 1)〉 = a− λΓ (1)/f, (4.11)

with the static orientational order parameter correlation
function Γ (1) given by equation (4.4). Since λ, Γ (1) and
f are positive, the RRT coupling always leads to a re-
duction of the average distance a between nearest neigh-
bor molecules. For T = 300 K, we find a contraction
by 0.00014 Å. Since Γ (1) increases with decreasing T ,
the lattice contraction increases with decreasing T ; for
T = 10 K, the contraction becomes 0.0029 Å. In analogy
with magneto-thermo-mechanics we call this contraction
a phenomenon of torsio-thermo-mechanics.

Although the 1-d model described here does not ex-
hibit translational long-range order, i.e. there are no ideal
Bragg peaks in the neutron or X-ray scattering law,
we will apply concepts introduced for the description of
Hg3−δAsF6 [11,43] and show that the structure factor has
characteristic resonances in reciprocal space. The static
translational structure factor of a non-rigid 1-d chain of
N C60 molecules with center-of-mass positions ζ(n) is de-
fined by

S(q) =
1
N

〈
N∑

n=1

N∑
n′=1

e−iq[ζ(n)−ζ(n′)]
〉
. (4.12)

Here the wave vector q refers to the momentum transfer
�q between the molecules of the chain and the scattered
particle (neutron, photon, electron). The thermal expecta-
tion value will be calculated with the potential V averaged
over the orientational degrees of freedom. Dropping then
irrelevant constant terms, we retain

V
({
ξ(n)

})
= V TT + V RRT

({
ξ(n)

})
. (4.13)

The calculation of the structure factor is performed in
Appendix A, with the result

S(q) =
1 − Z2(q)

1 + Z2(q) − 2Z(q) cos
(
q
〈
ζ(n) − ζ(n− 1)

〉) .

(4.14)

Here Z(q) stands for

Z(q) = e−q2σ2/2, (4.15)

and
〈
ζ(n) − ζ(n − 1)

〉
, given by equation (4.11), is the

average center-of-mass distance between nearest-neighbor
molecules in presence of orientational correlations. An
expression similar to (4.14) was originally derived by
Axe and Emery [11] for a chain of mercury atoms in
Hg3−δAsF6. The essence is that short-range displacive
correlations are systematically taken into account. The
present result which applies to (C60)N@SWCNT is an ex-
tension in as far as it takes into account the axial ori-
entations of the C60 molecules as well as the coupling of
molecular displacements to orientational correlations. In
Figure 6 we have plotted S(q) for T = 300 K. The trans-
lational structure factor exhibits narrow peaks centered
around

qj = j
2π〈

ζ(n) − ζ(n− 1)
〉 , (4.16)
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Fig. 6. Structure factor S(q) at T = 300 K, abscissa q =

q 〈ζ(n)−ζ(n−1)〉
2π

.

j ∈ Z. These peaks give rise to thin sheets in reciprocal
space. They appear as streaks in the experimental diffrac-
tion pattern [9].

5 Conclusions

In peapods (C60)N@SWCNT the nanotube field potential
is the analogue of the crystal field in molecular crystals.
Starting from a model of van der Waals interaction po-
tentials between a C60 molecule and the cylindrical wall
of the surrounding SWCNT, we have formulated the nan-
otube field potential as a function of nanotube radius RT

and molecular orientations. Thereby we have introduced
molecular and cylinder symmetry adapted rotator func-
tions. Drawing Mercator [28] maps (see Figs. 2a–2c) of the
nanotube field potential as a function of molecular orien-
tations for a variety of tube radii, we find distinct axial
orientations (a symmetry axis of the molecule is parallel to
the nanotube axis). For tubes with small radii (RT � 7 Å),
the repulsive part of the van der Waals potential is domi-
nant and a fivefold axis of the molecule coincides with the
tube long axis, for larger radii, RT � 7.9 Å, the attractive
part of the van der Waals potential prevails and a three-
fold axis of the molecule coincides with the tube axis. For
7 Å� RT � 7.9 Å the preferred axial orientation in the
nanotube field corresponds to a twofold axis of the C60

molecule.
However energetically more important than the change

of molecular orientation with increasing tube radius it the
fact that for RT � 7 Å, the nanotube axis is no longer a
locus of stability for the molecular center-of-mass position
(Fig. 3). Our results are in agreement with previous theo-
retical work based on first-principles calculations [13] and
on potential energy calculations for spherical molecules in
structureless nanotubes [14].

We point out that in a range near 7 Å the C60

molecules have their centers of mass on the tube axis with
a twofold molecular axis coinciding with the tube axis.

This configuration is a prerequisite for polymerisation by
cycloaddition of neighboring C60 molecules [29,30].

Two distinct molecular center-of-mass positions, on-
axis for RT � 7 Å and off-axis for RT � 7 Å, correspond
to fields of distinct strength and symmetry experienced by
the molecule in small- and large-radii nanotubes. Distinct
fields lead to distinct internal mode frequencies of the en-
capsulated C60 molecule. Since experiments are performed
on an assembly of nanotubes with a dispersion of radii,
the present results on the nanotube field give a convinc-
ing explanation of resonant Raman spectroscopy results
where one measures an apparent “splitting” of Ag Raman
modes [15,16] at sufficient low temperature.

While in C60 peapods the dependence of the nanotube
field on molecular orientations leads only to weak en-
ergy differences, it should be more important for more
anisotropic molecules like C70. There a splitting of elec-
tron diffraction peaks is interpreted in terms of two dis-
tinct orientations of the C70 molecule [9]. We expect that
the corresponding distinct nanotube fields will also lead
to a splitting of A′ Raman peaks.

We have studied a linear chain of N interacting C60

molecules with fivefold axial orientation in small nan-
otubes. Since the interaction of two nearest-neighbor
molecules depends only on the difference of their orien-
tation angles, we find that the rotational interaction po-
tential corresponds to a O2 symmetry rotor model. Al-
though there is no true long-range orientational order, in-
teractions between neighboring molecules are attractive
and favor orientational correlations. Due to the inversion
symmetry of the C60 molecules, the neighboring faces of
two nearest-neighbor molecules with a same orientation
angle are in staggered configuration. Orientational corre-
lations are increasing with decreasing temperature. Taking
into account center-of-mass displacements of the molecules
along the nanotube axis, we have shown that the cou-
pling of translational and rotational degrees of freedom
leads to a shortening of the average intermolecular dis-
tance. Even if we do not assume chemical bonds between
neighboring molecules, there is an effective attraction due
to orientational and displacive correlations which might
lead to clustering of groups of neighboring molecules in
sparsely filled tubes. These groups would appear as dimers
or trimers ..., although there is no true polymerization.
We expect that these concepts will be useful for the in-
terpretation of recent inelastic neutron scattering experi-
ments [44] on the dynamics of C60 molecules inside nan-
otubes. Indeed, starting from the O2 rotor model on a
non-rigid chain and taking into account the coupling of
translational and orientational degrees of freedom, we are
planning to calculate dynamic correlation functions.

Taking into account orientational and translational
correlations, we have calculated the translational struc-
ture factor, thereby extending previous work [11] on 1-
d fluctuations and chain ordering in Hg3−δAsF6. In the
future these concepts should be incorporated in a more
unified theory on the structure of peapods [45] and nan-
otubes [46].
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Appendix A

Here we will give details on the calculation of the structure
factor S(q). Starting from the definition equation (4.12),
we rewrite the distances ζ(n) − ζ(n′) in terms of devia-
tions from average nearest-neighbor distances by means
of relation (3.10). For n = n′ +m we have

ζ(n′ +m) − ζ(n′) = ξ(n′ +m) + . . .+ ξ(n′ + 1) +ma.
(A.1)

We then obtain

S(q) = 1 +
(

1 − 1
N

) [
e−iqaR(q) + eiqaR(−q)]

+
(

1 − 2
N

) [
e−2iqaR2(q) + e2iqaR2(−q)] + . . . (A.2)

with thermal averages R(±q) = 〈e∓iqξ〉 given by

R(±q) =

∫ ∞

−∞
dξe∓iqξe−U(ξ)/T

∫ ∞

−∞
dξe−U(ξ)/T

. (A.3)

Here U(ξ) stands for

U(ξ) =
f

2
ξ2 +Kξ (A.4)

with K ≡ λΓ (1). By integration we obtain

R(±q) = e∓iq K
f Z(q), (A.5)

where Z(q) is defined by equation (4.15) with σ2 = T/f ,
equation (4.7). We rewrite equation (A.2) as

S(q) = 1 + 2
{(

1 − 1
N

)
cos(x)Z(q)

+
(

1 − 2
N

)
cos(2x)Z2(q) + . . .

}
(A.6)

where

x = q

[
a− K

f

]
= q

〈
ζ(n) − ζ(n− 1)

〉
. (A.7)

The last equality is obtained by equation (4.11). We con-
sider the expression within braces for large N , use the fact
Z(q) < 1 for convergence and apply the identity

1 + Z cosx+ Z2 cos(2x) + . . . =
1 − Z cosx

Z2 − 2Z cosx+ 1
.

(A.8)

The structure factor then becomes

S(q) = 1 + 2
{

Z(q) cosx− Z2(q)
Z2(q) − 2Z(q) cosx+ 1

}
, (A.9)

which is equivalent to equation (4.14).
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